Homologous recombination in Escherichia coli: dependence on substrate length and homology.

نویسندگان

  • P Shen
  • H V Huang
چکیده

We studied the in vivo recombination between homologous DNA sequences cloned in phage lambda and a pBR322-derived plasmid by assaying for the formation of phage-plasmid cointegrates by a single (or an odd number of) reciprocal exchange. (1) Recombination proceeds by the RecBC pathway in wild-type cells and by low levels of a RecF-dependent pathway in recBC- cells. The RecE pathway appears not to generate phage-plasmid cointegrates. (2) Recombination is linearly dependent on the length of the homologous sequences. In both RecBC and RecF-dependent pathways there is a minimal length, called the minimal efficient processing segment (MEPS), below which recombination becomes inefficient. The length of MEPS is between 23-27 base pairs (bp) and between 44-90 bp for the RecBC- and RecF-dependent pathways, respectively. A model, based on overlapping MEPS, of the correlation of genetic length with physical length is presented. The bases for the different MEPS length of the two pathways are discussed in relationship to the enzymes specific to each pathway. (3) The RecBC and the RecF-dependent pathways are each very sensitive to substrate homology. In wild-type E. coli, reduction of homology from 100% to 90% decreases recombinant frequency over 40-fold. The homology dependence of the RecBC and RecF-dependent pathways are similar. This suggests that a component common to both, probably recA, is responsible for the recognition of homology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependence of frequency of homologous recombination on the homology length.

The frequency of homologous recombination is believed to be a linear function of the length (N bp) of homology between DNAs. Here, the N intercept is believed to be determined by a threshold length below which some physical constraint is effective. In the mammalian gene targeting systems, however, the frequency depends more steeply than linearly on the homology length. To explain both the linea...

متن کامل

Low Efficiency of Homology-Facilitated Illegitimate Recombination during Conjugation in Escherichia coli

Homology-facilitated illegitimate recombination has been described in three naturally competent bacterial species. It permits integration of small linear DNA molecules into the chromosome by homologous recombination at one end of the linear DNA substrate, and illegitimate recombination at the other end. We report that homology-facilitated illegitimate recombination also occurs in Escherichia co...

متن کامل

Trypanosoma brucei homologous recombination is dependent on substrate length and homology, though displays a differential dependence on mismatch repair as substrate length decreases

Homologous recombination functions universally in the maintenance of genome stability through the repair of DNA breaks and in ensuring the completion of replication. In some organisms, homologous recombination can perform more specific functions. One example of this is in antigenic variation, a widely conserved mechanism for the evasion of host immunity. Trypanosoma brucei, the causative agent ...

متن کامل

The role of negative superhelicity and length of homology in the formation of paranemic joints promoted by RecA protein.

Escherichia coli RecA protein pairs homologous DNA molecules to form paranemic joints when there is an absence of a free end in the region of homologous contact. Paranemic joints are a key intermediate in homologous recombination and are important in understanding the mechanism for a search of homology. The efficiency of paranemic joint formation depended on the length of homology and the topol...

متن کامل

Role of DNA ligase in the illegitimate recombination that generates lambdabio-transducing phages in Escherichia coli.

We studied the role of DNA ligase in illegitimate recombination in Escherichia coli. A temperature-sensitive mutation in the lig gene reduced the frequency with which lambdabio-transducing phages were generated to 10-14% of that of wild type under UV irradiation. Reintroduction of the lig gene into this mutant restored the frequency of recombinant phage generation to that of wild type. Furtherm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 112 3  شماره 

صفحات  -

تاریخ انتشار 1986